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Embedding is a representation of units such as words, sentences, or texts,
which embed these units into a high-dimensional vector space. An embedding
comprises a real-valued vector that can be interpreted as a point within this
space. Embeddings are used to calculate distributional similarity and can be
pre-trained on corpora using unsupervised large language models.

Distributional Hypothesis The Distributional Hypothesis states that words
that occur in the same contexts tend to have similar meanings (Harris, 1954,
p. 151-57). It has been operationalized in computational semantics as “words
with similar distributional properties have similar meanings” (Sahlgren, 2008,
p. 21). Distributional properties are understood as the sets of co-occurring
words in a corpus (plus their frequencies), e.g. such that the words occur in a
given window of n surrounding tokens of the target word, or occur in a syntactic
dependency relation with the target word. In a strong interpretation of the Dis-
tributional Hypothesis, humans derive the meaning of words from distributional
patterns (Lenci, 2008). The distributional hypothesis provides the theoretical
basis for representing meaning geometrically in vector spaces.

Generative AI can be defined as a technology that leverages → neural net-
works, also known as deep learning models, to generate human-like content (e.g.,
images, texts) in response to complex and varied prompts (e.g., languages, in-
structions, questions). In recent years they are usually based on the → Trans-
former architecture.
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Grounding refers to the process of providing LLMs use-case specific informa-
tion alongside prompts in order to improve the accuracy and quality of response.
This is necessitated by LLMs acting like engines rather than knowledge stores.
The most common technique for grounding is Retrieval Augmented Generation
(RAG) which provides additional context through information retrieval. This
typically involves semantic search (which relies on an embedding model, vector
index, and similarity search). More broadly speaking, grounding may also refer
to the situatedness of communication in space, time, and environment (as well
as embodiment, being grounded in bodily experiences) which informs the con-
text and thereby meaning of communication. The lack of such a situatedness
of cognition that characterizes LLMs is one of the root causes for the described
mitigation strategies and still one of the major points of contention.

Hallucination describes a phenomenon, primarily in the context of chatbots,
where fact-seeking prompts return replies containing non-sensical or fictitious
statements masquerading as fact. The generated responses retain a simulation
of plausibility without corresponding to actual information present in the source
material they were trained on. This may be caused by a variety of reasons,
including lack of grounding, overfitting and underfitting, source-reference di-
vergence (both intentional and unintentional), and noisy training data, among
others; most importantly, LLMs are language models rather than models of the
world and have no awareness of factuality as such, generating words on the basis
of probability rather than accuracy. The entirety and extent of the phenomenon
are not yet fully understood. For users, it is not always possible to easily discern
between fact and fiction, unless they possess the required domain knowledge
themselves. Different solutions have been proposed to mitigate the issue, such
as validating responses against information modelled in knowledge graphs.

Inference In the context of deep learning, the term ‘inference’ refers to the
forward pass in a neural network and the resulting prediction, for example that a
given email is spam. In cognitive science and philosophy inference refers to the
process of reaching a conclusion based on reasoning on the basis of information.
Very often three types of inference are distinguished: deduction, induction and
abduction. Deduction refers to a reasoning which is always true: 1) all humans
are mortal, 2) Sokrates is a human, 3) therefore Sokrates is mortal. In induction
the reasoning starts with an observation 1) Socrates is human, 2) Socrates is
mortal, 3) therefore all humans are mortal. In contrast to induction abduction
aims the best explanation of some fact using a general rule: 1) Socrates is
mortal, 2) all humans are mortal, 3) therefore Socrates is a human. In contrast
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to deduction, which always provides true results, the results of induction and
abduction are only probable (Douven, 2011).

Interpretation serves as an umbrella term for an attribution of meaning to
entities (e.g., aesthetic works, actions, natural phenomena, etc.).

Knowledge Graph refers to a networked representation that delineates real-
world objects and concepts into entities and models their relation to each other in
a graph database. Structurally, this requires nodes connected by edges; seman-
tically, it requires the labelling of components. The relationships in such a graph
are commonly expressed in semantic triples, i.e. subject-predicate-object state-
ments. A well-known example for a knowledge graph is Wikidata which “acts
as central storage for the structured data” of its sister projects like Wikipedia.
The notion of such webs of networked knowledge are closely related to princi-
ples and practices of Linked Open Data (LOD). Since knowledge graphs always
implicitly endorse a certain model of the world inherent to their expressions (as
conceptualized by humans), they are subject to biases, inaccuracies and lacunae.

Large Language Model (LLMs) are → neural networks trained on large tex-
tual corpora. Unlike traditional language models focused on specific tasks (e.g.,
text classification or summarization), LLMs are notable for their adaptability
across a broader spectrum of linguistic applications. This adaptability is enabled
by two core characteristics: → Transformer Architectures and self-supervised
training on very large datasets. The training data often encompasses hundreds
of billions of words sourced from diverse text genres. This enormous scale gives
LLMs substantial statistical knowledge about language patterns and relation-
ships. The combination of transformer architectures and very large training
datasets leads to several key functional capabilities in LLMs: Text Generation
and Natural Language Understanding. LLMs exhibit a remarkable ability to gen-
erate coherent and fluent text. This generative capability spans various forms,
including the completion of unfinished text, the creation of summaries, and even
the production of different creative text formats (e.g., poems, code, scripts).
LLMs demonstrate also a degree of language comprehension. This understanding
enables them to tackle tasks like question answering (factual and open-ended),
text classification, and sentiment analysis.

LLMs come in ‘pre-trained’ form. While this pre-training provides a foun-
dational linguistic understanding, they also possess two key methods for greater
task-specificity: Fine-Tuning and In-Context Learning. Fine-Tuning involves fur-
ther training the LLM on a targeted dataset aligned with a particular task or
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domain. It helps the LLM adapt its statistical patterns to better match the de-
sired application, improving performance. LLMs can be instructed via ‘prompts’
or ‘demonstrations’ - this is refered to as In-Context Learning. A well-designed
prompt supplies the model with examples of the intended input and desired out-
put format. LLMs can then ‘learn’ the pattern and generalize to similar unseen
cases, often reducing or even eliminating the need for fine-tuning. LLMs are now
widely used in the form of models which have been fine-tuned on the task to
function as general chat programs. Usually this is done by reinforcement learning
with human feedback (→ Training).

LLMs possess some significant limitations. 1) Factual Inconsistencies or →
hallucinations: LLMs, due to their statistical nature, are prone to generating
factually incorrect or misleading statements. This tendency, coupled with fluent
text generation, can make it difficult to distinguish LLM output from reliable
information. 2) Biases: Training LLMs on real-world textual data means they can
inherit and perpetuate biases existing within those corpora (Bender et al., 2021).
Biased outputs raise serious concerns about fairness and ethical implications. 3)
Stability: Small perturbations of the input, e.g. small changes to the prompt,
may result in very different output. 4) Opacity: The sheer size and complexity
of LLMs often result in them being ‘black boxes’. Understanding exactly how
these models reach decisions or produce outputs is a significant challenge for
researchers, impacting explainability and efforts to mitigate the issues mentioned
above. → Probing is used to understand the internal workings of LLMs to
mitigate some of these problems.

Mathematical foundations Three notions have been essential not only to the
design and to regular calculations in and with LLMs but to NLP in general. In
language and text models, units are represented as vectors in an n-dimensional
vector space model. In the classic bag-of-words model, each document is rep-
resented as one vector with n word frequencies as dimensions. Recent langauge
models rely upon word vectors rather than text vectors, where the co-textual
context forms the coordinates of each vector. A number of m units (words or
documents) yields a m x n matrix for an n-dimensional vector space. Based on
the bag-of-words-model, corpora are represented as document-term-matrices. In
the model of word vectors, m words yield a m x n matrix of a sample of m words
where each word is represented as an n dimensional vector. One mathematical
strength of vector-space models and the representation of linguistic units in ma-
trices is the computability. Comparability of linguistic units such as the similarity
of word meaning or the stylistic similarity of whole documents can be calculated
by classic geometric distance measures (such as Manhattan, Euclidean, and Co-
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sine distance). One critical step forward in the development of language models
was the analogy between semantic relation and vector calculus. It has been
shown, that subtracting the vector of the word ‘man’ from the vector of ‘king’
and adding the vector of ‘woman’ results in a synthetic vector that has the lowest
distance to the word vector of the word ‘queen’. This result demonstrates that
language models that are based on word vectors are capable of learning latent
semantic relations without explicitly being trained on these semantic relations.

Meaning The concept of meaning is crucial to linguistics, literary studies and
criticism as well as to philosophy. ‘Meaning’ is often disambiguated as ‘word
meaning’, ’word sequence meaning’, ’utterance meaning’ and ‘utterer’s meaning’
(Tolhurst, 1979). These distinctions refer to controversies regarding the status
of intentionality, truth, the necessity of concrete reference, and of temporally
and spacially specified situation (grounding) for the actualization of linguistic
meaning. These distinctions and the underlying controversies are critical to
current discussion on LLMs’ capability of generating not only textual output but
also meaningful content.

Neural Network Artificial neural networks are a family of algorithms used for
machine learning. It is loosely based on a very simplified model of a biological
brain. Its basic building blocks are nodes, also called neurons, and edges which
control the flow of information (Russell, Norvig 2016: Chapter 22). Neural net-
works can be used in a supervised and a unsupervised framework. In a supervised
setting neural networks are first trained to solve a task using data which contain
the correct answer for the task. If, for example, the task is the classification of
emails as ‘spam’ or ‘not-spam’, the training data consists of many emails, each
with a label identifying the category it belongs to. Training is one of two states
of a neural network; prediction is the other. The training creates a model and
this model can then be used to predict the answer to the same task on new, yet
unseen data.

The nodes of a neural network are usually organized in layers, which receive
their input from the previous layer and send their results to the next layer. Each
node receives information from its input edges, processes the information and
sends an output to its output edges connected to nodes from the next layer.
How the nodes of a layer are connected to the nodes of the same layer, to the
previous layer and the next layer is determined by the architecture of the network.
Because there are usually many layers in networks after 2005, they are also called
deep neural networks.

In a single node the processing of the information usually consists of a multi-
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plication of the input with a list of numbers specific to the node called ‘weights’
(and the addition of a ‘bias’ term) (Goodfellow et al., 2016). The result of
this multiplication is sent through an activation function, which has often a very
simple form, for example setting all negative numbers to zero. It has been shown
that with this step even simple feedforward layers can, if they are large enough,
approximate any possible function (Hornik et al., 1989). While the architecture
of a neural network is stable, the weights are changed during the training. In the
beginning of the training the weights are set to random numbers. Then training
data is sent through the network and the predicted output is compared to the
label of the data. Based on this comparison in a process called ‘backpropaga-
tion’ all the weights of the network are slightly adjusted to provide a better result
for the next forward pass. At the end of the training process the weights have
values which allow the network as a whole to achieve its task in an optimal way.
After the training the weights are not changed. The weights, the task-adapted
numbers in each node, not only help to solve the tasks; they also represent those
aspects of the information which are needed to solve the task. If, for example,
the task is an image classification, then the weights will represent aspects of
the image. The weights of layers closer to the input represent more basic in-
formation like lines, while weights of layers closer to the output represent more
abstract information like an ‘eye’. Very often the weights of networks trained on
a very generic task, for example masked word prediction, are used as semantic
representations; in this context the weights are called → embeddings.

The architectures which have been used in the first two decades of the 21st
Century, e.g. Convolutional Network, Gated Recurrent Unit, Long Short-Term
Memory, have been superseded by the → Transformer architecture (Vaswani
et al., 2017), which has been very successful across many different media and
tasks. While it has been common to train networks from one end (the input data)
to the other end (the answer to the task), in recent years a two-step approach
became established: first, neural networks are trained on a generic task and a
huge amount of data, which results in semantically rich representations, secondly
the model is ‘fine-tuned’ to a specific task. Because the first step is so time-
consuming and expensive, new workflows were developed where a model was pre-
trained on a huge amount of data using a generic task like next word prediction.
Then this foundational model (Bommasani et al., 2021) is fine-tuned for many
different tasks. Since 2023 very large models like ChatGPT 4, Llama 2 (Touvron
et al., 2023) or Gemini (Team, 2023) have been published. After the first phase,
during which the models were trained on next word prediction, in a second phase
reinforcement learning with human feedback was used to “further align model
behavior with human preferences and instruction following.” (Touvron et al.,
2023). GPT 4 and Gemini are also multi-modal model, capable of processing
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text, audio, images and videos. Very recently published or announced models
like Mixtral, Gemini 1.5 and (probably) GPT 4 use eight or more different models
in a mixture of experts setup, where each part of the input is sent to only one
of the models (Shazeer et al. 2017). All these newer models provide a chat
interface which allows it users to phrase the task using natural language. Their
very rich semantic representation very often enables zero-shot learning making a
fine-tuning to the specific task a user wants to solve not necessary any longer.
In this context the phrasing of the task, the → prompt engineering, becomes
more and more important to achieve reliable results (Wei et al., 2023).

Probing is a technique that indirectly analyzes the opaque internal represen-
tations of a trained large language model through targeted tasks. The goal is
to understand, for example, the model’s linguistic or geographic knowledge or
gender biases. The generated output is used as a proxy for the original model.

Prompt engineering Since the establishment of instruct-layer based language
models that operate as chat bots (most popularly ChatGPT by OpenAI), the
design and construction of prompts has become more and more a proper field
of applied computer science, of job profiles and thus of professional engineering.
The growing importance of prompt engineering also raises question regarding
the transformation of methods and analytical techniques in digital humanities re-
search. For example, a significant branch of computational literary studies (CLS)
is occupied with operationalizing the detection of complex textual features such
as different types of speech and thought representation. In such fields, rule-based
programming that detects specific linguistic features has largely been replaced
by algorithmic models based on training data during the last two decades. While
rule and model-based analysis requires programming skills, prompt engineering
is largely a matter of interacting with a language model on the level of natu-
ral language use. It is an open question to what extent rule- and model-based
text analysis will be replaced by prompt engineering also in digital humanities
methodology. Different techniques that are oriented towards natural conversa-
tion have emerged. Among these, tree-of-thought (ToT) and chain-of-thought
(CoP) prompting have gained the highest interest in the Humanities. CoT is
used to solve a problem as a series of intermediate steps prior to giving a final
answer. It gains its strength from forcing the model to base its consecutive
answers on its prior output and thus to refine its answers during the chain of
thoughts. Ted Underwood could show the increase of performance based on
CoT in a large scale macro analysis of the passage of time in narrative fiction.
ToT generalizes CoT by asking the model to provide different solutions and to
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run the model on each solution respectively. It is likely that model based and
prompt based text analysis are going to be in competition for the next years.

Sentence Embedding is a numeric representation of a sentence, presented as
a vector of real numbers. Contextualized embeddings play a role in this process,
combining static embeddings to convey the context-dependent meaning of each
token. BERT (Devlin et al., 2019) is a model that adopts this approach, built
upon a Transformer architecture.

Theory of Mind is a concept developed in cognitive science that describes
the ability of humans to incorporate the intentions and beliefs of others, includ-
ing their respective levels of knowledge about the situation, into their mental
representation of the situation.

Transformer is an architecture for → neural networks. Since its first descrip-
tion (Vaswani et al., 2017) where it was applied to machine translation, it has
become the standard architecture not only for natural language processing but
also image processing and multi-modal models. Transformers are especially good
in handling sequential data. The paper describes an architecture where the input
is passed through an encoder and then through a decoder. Each of them consists
of a specific building block which is repeated n times (the size of n is part of the
specific implementation). The main component in these building blocks is multi-
head self-attention. Self attention checks the connection between every element
of the input to each of its other elements giving those elements a higher weight
which are important for the solution of the task. Multi-head means that the
same process is happening in parallel on the same input whereby different task-
relevant aspects of the input are highlighted in each head, for example semantic
and syntax. In contrast to earlier architectures for sequential data Transformers
don’t process them sequentially step by step, for example word by word, but
in parallel. This is made possible by positional encodings of the input. One
of the main limitations of Transformers was the limited size of the input it can
handle, because during self attention each input element is connected to each
other element, which means that if you double the size of input elements there
are now 4 times as many connections. Recent models use different strategies to
handle this limitation and are able to handle up to 1 mio tokens context.

Training is the process of optimizing the parameters of a statistical or neural
model using training data. In simplified terms, the training of a statistical model
adjusts its rule probabilities according to the distribution of the patterns that
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are found in the training data such as how often a particular syntactic structure
occurs. In the case of → large language models, it is not probabilities that
are optimized but the ‘loss function’ that measures the discrepancy between
predictions of the model and what is found in the training data. Here, the
training objective is to minimize the loss function. In general, the training data
can be unstructured text or annotated instances, such as word tokens annotated
with part-of-speech labels. For example, in the case of pre-training LLMs, the
training data are large amounts of raw text; in the case of fine-tuning LLMs,
the training data often include annotations of the target output. A side effect
of training a model is that the model learns whatever biases are in the training
data. Given that the world is an unjust place, models trained on texts produced in
this world appropriate the prejudices and stereotypes inherent in the texts—and
may even reinforce them. The debiasing of LLMs is an important but unresolved
task. A special case of training is Reinforcement Learning from Human Feedback
(RLHF), which was extensively used to improve ChatGPT. It describes a feedback
loop in which the model’s output is evaluated by a human. Compared to training
on data, RLHF is like teaching a child something through guidance and feedback
instead of letting them learn through trial and error.

Word Embedding establish a link between operations in the vector space
and the semantic/syntactic properties of words, by mapping words from the
vocabulary to points in an n-dimensional vector space. This approach, originally
outlined by Rumelhart et al. (1988), became popular with the introduction of
word2vec by Mikolov et al. (2013).
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